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Abstract

The privacy preserving techniques coupled with trust
computing platforms can offer end-to-end private and
secure Machine Learning. Myelin is a state-of-the-art
framework which allows the user to do this, with a com-
bination of many techniques such as differential privacy,
TEE, TVM & data oblivious algorithms. However, using
this in real life applications is not trivial and we believe
one-size-fits-all is not a desired approach as privacy of-
ten comes at a cost of speed or accuracy. In this work,
we aim to do a fine grained analysis on the effect of each
of the components of Myelin on accuracy, speed, and pri-
vacy and provide detailed insights on them. The goal is to
offer a guide to make an informed decision regarding the
choice of selections of environments, based on specific in-
dividual needs. Based on our results, we recommend that
users concerned about privacy should port their models
to TEEs with the help of TVM and suggest they consider
adding differential privacy where protecting the privacy of
training data is more important.

1 Introduction

Machine learning and Deep learning have become in-
creasingly popular in this decade. These models are being
widely used for many applications including those which
are security and privacy sensitive [23]. This raises the
importance of having robust and privacy aware machine
learning pipelines to safely and securely use the models
by avoiding the potential risks. These potential risks are
becoming more significant due to the shift in the Machine
learning processes from a static training and inference into
a more streamlined way that includes directly gathering
the data from multiple untrusted sources and performing
the training and deployment on untrusted clouds. Sev-
eral attacks are prevalent such as Training / Input / Output
data being stolen or exploited [26], or Models (architec-
ture/weights) being tampered or stolen from memory [15].

One of the ways to tackle these issues is to use Trusted
Execution Environments (TEEs) such as Intel SGX [22].
SGX acts as a shield around memory and processing,
which consists of trusted hardware enclaves that seper-
ate the general application code with the security-sensitive
code through an enclave boundary. This helps to allow
secure computations and data access & storage on an un-
trusted system even while the non-SGX specific code re-
mains virtually unchanged. However, using the Trusted
Execution Environments alone is not sufficient as they are
vulnerable to Model Inversion attacks [6], other side chan-
nel attacks that exploits the Memory Access Patterns [16].

Hence Trusted Execution Environments alone do
not satisfy the privacy expectations for an End-to-end
Privacy-preserving Machine Learning that safeguards
data, code and computations. The solution is to com-
bine trusted execution environments with techniques such
as differential privacy, in order to mitigate these attacks.
Myelin [10] is a state-of-the-art and first of its kind frame-
work that combines differential privacy, trusted execution
environments, TVM [4] and data oblivious algorithms
[17], and supports end-to-end fully private training on
multi sourced data from mutually distrusting parties.

The evaluation of Myelin however is limited and it does
not provide an ablation study to understand the effects of
each of the components on privacy, accuracy and speed.
This is very important since incorporating privacy pre-
serving pipelines is not trivial in real life scenarios due
to the fact that privacy comes at a cost of either speed or
accuracy. The users should be able to strike a clear bal-
ance of each of these tradeoffs, according to their own
unique needs. We believe there is no gold standard in the
selection of environments in this case, rather it is to be
customized on a case by case basis. This motivated us
to do a fine grained analysis on the effects of the individ-
ual components of Myelin and provide a guide along with
insights and recommendations.

The remainder of this paper proceeds as follows: Sec-
tion 2 gives the background, an overview of the results of
Myelin and a discussion on the conditions that are to be
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studied further. Section 3 describes the design of our ap-
proach to obtain the results for these conditions. Section 4
evaluates the results and provides the insights. Section 5
discusses the challenges, limitations and other additional
topics. Section 6 describes the related work in privacy-
preserving ML and Section 7 concludes our work.

2 Background & Overview

2.1 Background
2.1.1 Privacy Expectations in ML

The privacy expectations associated with the Machine
learning models can be broadly categorized into 4 types:
First, Training data privacy - training data collector and
aggregator adheres to the privacy expectancy. Second, In-
put data privacy - making sure the model input data re-
mains private. Third, Model weights privacy - ensuring
that the model weights are not tampered with. Finally,
Output data privacy - preserving privacy of the sensitive
output data.

2.1.2 Differential Privacy

Differential Privacy is a algorithmic framework for guar-
anteeing the privacy of input data through adding Gaus-
sian noise at some point during training[2]. In Myelin
[10], this noise is added to the gradient before back-
propagation and in our testing environment the noise is
added directly to the input data before the model is trained
on it.

213 TVM

Apache TVM [4] is an open source deep learning com-
piler stack for CPUs, GPUs, and specialized accelerators.
Myelin uses TVM for performance improvement in terms
of efficiency. It aims to run models on any hardware back-
end (including SGX). Uses Relay Intermediate Represen-
tations (IR) to optimize and run computations efficiently.

2.1.4 Myelin

Myelin [10] is an integration of many means for achieving
end-to-end privacy-preserving Machine Learning. For the
privacy of data and computations, it uses Trusted Execu-
tion Environments. For the privacy of the training data
and to avoid the exploits through Memory Access Pat-
terns, differential privacy is used. These techniques how-
ever severely affect the speed and performance. The data
should be transferred back and forth to the secure enclaves
that increases the time required for the computations and
differential privacy also adds an overhead for adding the
noise to the data or the model. Hence, for the sake of

efficiency, Myelin uses modular, optimized numerical li-
braries for machine learning computations, with the help
of the Apache TVM framework. Another advantage of
TVM is that it helps to directly enable the interactions
with the hardware backend of Intel SGX. Myelin is ob-
served to be 3x faster than cryptographic methods.
Hence, the Machine learning pipeline in the case of
Myelin (Figure 1) will be as follows: The Model code
written by the ML user will be converted into the Re-
lay Intermediate Representations of TVM and added upon
with the other techniques of the Myelin framework, it will
then be moved to a trusted model training enclave. This
trusted model along with the data from multiple providers
is trained in an enclave-enabled untrusted cloud, thereby
finally producing the privacy-preserving trained model.
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Figure 1: Myelin in action

2.2 Overview

Since Myelin [10] is a first of its kind work, there is no
benchmark or baseline to compare with. Hence the re-
sults of Myelinated models trained without differential
privacy were compared against the other works, in this
area on trusted hardware but without Differential Privacy,
like Gazelle [11], Chiron [9] and Slalom [24]. This also
includes the compact models such as MobileNets [8] but
were done only for inference and not training. Another
comparison presents the results of a fully private model of
Myelin against non-private CPU baseline. We are specif-
ically interested in the second comparison and we believe
there is a lot more to study in depth over here.

The results available in the Myelin paper, were only for
baseline with no SGX or TVM or DP, compared against
fully private Myelinated models. The first comparison
gives us the results of Myelinated models without the
presence of Differential Privacy. We rearranged the re-
sults and organized them into a more structured form with
a focus on the aspects of privacy, accuracy and speed; and
covering all possible combinations of the environments
(see Table 1). Those having both SGX and DP are termed
to be fully private which those having only DP are DP-
private and only SGX are SGX-private. The speed is
calculated in terms of both training and inference where
training speed is measured in minutes/75 epochs and in-
ference is in images/sec.



These results are, however, not extensive and miss out
on many combinations which are needed in order to al-
low for a clear overview for understanding and balanc-
ing the security-usability, accuracy-security and accuracy-
usability trade-offs. Some of the results in Table 1, which
we intended to investigate and involve SGX, are not cov-
ered in the paper, however, we were unable to reproduce
them due to some issues with availability of SGX as high-
lighted in the challenges in Section 5.

Hence the goal of this work is to analyze and evalu-
ate the Myelin framework to determine its bottlenecks &
shortcomings in terms of ASP (accuracy, speed and pri-
vacy), for the combinations of cases that does not involve
SGX, and summarize our findings as a whole in compari-
son to some of the results presented in Myelin that involve
SGX. The combinations of cases for which we seek to get
results, are available in the ‘setting’ column of Table 2.

3 Design

The experiment setting will make an impact, especially
on the speed. Different processors might contribute to
different speeds. Hence we had to present results in two
different experiment settings, one from the results of the
Myelin work and the other that corresponds to our results.
We however reproduced the results of the baseline in our
setting, so as to allow an easy comparison across the two
experiment settings in the two tables.

The experiment setting 1, from the Myelin paper, is as
follows:

Model: Resnet-32 (epochs:75)

Task: CIFAR-10 image recognition (50k train images +
10k test images)

Processor: Intel Xeon E5-2690 v4 CPU

DP setting: € = 4 , failure probability § = 10-5 , lot size L
= 1024, added noise in model directly

The experiment Setting 2, from our work, is as follows:
Model: Resnet-32 (epochs:75)
Task: CIFAR-10 image recognition (50k train images +
10k test images)
DP setting: € = 4, failure probability § = 10-5 , sensitiv-
ity = 1, added noise to input data
Processor: Intel® Core™ i7-9700K CPU @ 3.60GHz x
8 GPU: GeForce GTX 1070/PCIe/SSE2; Memory: 31.3
GiB

In our experiment setting, the noise was added to the
input data through the Laplace mechanism for (e,d) -
differential privacy as proposed by Holohan et al. [7].
Since it is not trivial to operate on the intermediate rep-
resentations of TVM to perform such operations, we
avoided the addition of noise in the model itself directly.

We also faced some issues with training in the presence of
TVM, which are highlighted in the challenges in Section
5, hence, we left out some of the values for training speed
for TVM cases as shown in Table 2. This overhead of
addition of noise to the input data affects only the overall
training speed and not the speed of inference. The detailed
interpretation of the results is presented in Section 4.

4 Evaluation

4.1 Accuracy

From Table 1, it can be seen that the accuracy will only
be affected for the cases that involve differential privacy,
since noise is added to the input data or model, while for
other cases it remains the same, i.e., presence or absence
of TVM or SGX does not have an impact on accuracy.
In the experiment it can be observed that the accuracy
drops from 92.4% to 90.8% with an overall decrease of
1.7%. Although this percentage is small, it still holds the
claim that the accuracy decreases with Differential Pri-
vacy. With this, further research needs to be done to find
out the impact of Differential Privacy on a range of models
to better understand the introduction of Differential Pri-
vacy to different models.

4.2 Privacy

In order to introduce any privacy, data obfuscation needs
to come into play through differential privacy and/or a
trusted environment needs to be introduced to avoid any
memory alterations or side-channel attacks. Myelin suc-
cessfully takes into account both the privacy issues and
incorporates both a secure isolated environment and train-
ing data protection through differential privacy. The only
privacy issue that could be posed on the system would be
if a weak differential privacy algorithm is adopted by the
user. Other than that, the system was thought to be highly
robust. But in conjunction with other trade-offs, one can
make a choice if they specifically need fully private al-
gorithm or any of DP-private or SGX-private would suf-
fice. Applications that are not highly privacy sensitive can
choose to go with SGX-privacy if speed or accuracy are
rather more important.

4.3 Performance

The performance from our experiments varies over the
range of settings. As it can be seen that the baseline mod-
els in both of the tables (Table 1 and 2) take 12.3 and
18.125 minutes per 75 epochs to train on the data. The
issue arises however with the introduction of Differential
Privacy which in experiment 2 almost doubles the time to



Experiment Setting 1 (Myelin)
Setting Accuracy Speed (train) Speed (infer) Privacy
- min/75 epochs - img/s

Baseline 92.4% 12.3 476 No
base + TVM + SGX + DP (myelin) 90.8% 12.9 same as base+TVM+SGX | Fully-private
base + DP + SGX 90.8% - same as base+SGX Fully-private
base + TVM + SGX 92.4% 11.4 - SGX-private
base + SGX 92.4% - - SGX-private

Table 1: Results for experimental setting 1 (Myelin) reorganized in ASP perspective

Experiment Setting 2 (Our)
Setting Accuracy Speed (train) Speed (infer) Privacy
- min/75 epochs - img/s
Baseline 92.4% 18.125 327 No
base + DP + TVM 90.8% base+TVM + 12.525 338 DP-private
base + DP 90.8% 30.65 327 DP-private
base + TVM 92.4% - 338 No

Table 2: Results for experimental setting 2

train for the training considering the time added to make
the input data differentially private.

Furthermore, the TVM framework makes the inferen-
tial speed fast (11 img/s - 3.2%) and so the framework
itself would create a performance improvement for in-
ference, but with an additional implementation overhead.
However, TVM provides easy access to TEEs like SGX
through readily available libraries, so given the advan-
tages with TVM, it is always suggested to use it if SGX
is required at all, but rather choose to skip it if differential
privacy (sensitive training data) and ease of implementa-
tion are the prime focus.

However, by introducing any low-powered trusted envi-
ronment, we can expect high performance overhead both
in training and inference, due to the need for multiple data
transfers with the trusted enclaves. Trusted Execution En-
vironments also comes at a cost of limited memory. The
inference speed for Myelin in table 1 is missing since the
paper did not report it and so we cannot make any direct
implications on the performance evaluation in cases that
involve TEE.

4.4 Summary

From the results, with regards to the Privacy-Speed-
Accuracy tradeoff, it is apparent that the cost to speed for
Differential Privacy and SGX in both training and testing
is somewhat trivial and therefore should generally pose a
rather negligible hurdle whenever time is not an exceed-
ingly limited resource. In terms of accuracy, however,
the decrease when using Differential Privacy is somewhat

more apparent, leaving it much more reasonable to omit if
the guarantee of the privacy of training data is less impor-
tant than avoiding this drop-off in accuracy. Because of
these results, we recommend that if possible, users should
port their machine learning architectures to TEEs when-
ever there is any concern about privacy, and should con-
sider including Differential Privacy if the cost of slightly
lower accuracy is acceptable and training data privacy is
valued. The side channel attacks in TEEs through Mem-
ory Access Patterns are rather rare and can be a valid
trade-off based on the requirements. TVM is highly rec-
ommended to use in conjunction with TEEs, however, not
with Differential Privacy.

5 Discussion

5.1 Challenges

When compiling the results in Tables 1 & 2 we were un-
able to successfully port any Machine learning architec-
tures to Intel SGX and did not have values from paper
[10] for certain combinations of Myelin features. This is
essentially due to the issues in setup and access of SGX.
Some of the issues are: it requires enabling SGX in BIOS,
supports only Intel based processors, has a very limited
memory, and most virtual machines cannot directly ac-
cess the SGX portion of the memory. We believe these
challenges are a reason for the slow adoption of SGX in
the machine learning community.

We were also not able to reproduce some of the non-
SGX results ourselves due to the various issues faced with



TVM. TVM offers only pre-trained models out of the box
that means the training performance under TVM frame-
work required implementation of models from scratch
which is especially challenging due to its nature of having
an intermediate representation that performs the compu-
tations. Implementing Differential Privacy & Data Obliv-
ious algorithms with Relay IR is hence challenging to im-
plement in TVM and so transitively in Myelin as well.
The TVM framework is actively under development and
we hope it will be robust enough soon, which will help
to implement Myelin on TVM easily. TVM also requires
several steps of configuration which are very time con-
suming and requires expertise in systems engineering.

Furthermore, there is no publicly available implemen-
tation of Myelin in its full form that is robust enough. For
instance properties like differential privacy are not incor-
porated in the demo code provided by the authors which
forced us to use the technique of the addition of noise to
the input data instead of the model directly, further adding
to the issues of flexibility in TVM. This resulted in a huge
increase in the time needed for training, which would not
be the case if it is done on the model directly.

5.2 Limitations

Due to the challenges noted above, we were unable to
fully analyze all combinations of Differential Privacy,
TVM, and SGX on a single experiment setting, to achieve
a full picture of the Privacy-Speed-Accuracy tradeoff for
each aspect. The Differential Privacy implemented in
Myelin [10] was internal to the architecture while the
Differential Privacy in our experiment setting was added
through inserting noise directly into the training data. Our
work only articulates limited information for looking at
the union of the results due to the differences introduced
by multiple hardware environments as well as the differ-
ence in the implementation of Differential Privacy. We
also missed out on some of the results due to the chal-
lenges faced with the lack of ease of access to SGX, TVM
and a robust implementation of Myelin.

Because of these reasons, while we were able to gen-
erally describe the effects of these features on speed and
accuracy, we remain unable to fully quantify them in a re-
liable way. One other limitation of Myelin is that it did
not explore the usage of compact or optimized Machine
Learning models that can indeed be private and also be
used on the trusted hardware platforms. It is also clear
that while there are combinations of privacy preserving
components of machine learning that can combine to cre-
ate fully private models at limited cost to accuracy and
speed, the implementation of such components proves
prohibitively onerous.

5.3 Future Work

The immediate future work is to fill out the results that
were left in our experiments along with those in Table 1
related to SGX, due to the issues faced as noted above.
Incorporating differential privacy to light-weight models
like MobileNets and TinyML is a way to increase the
speed while ensuring privacy, if there is a flexibility in the
choice of the model selection for the task intended. This is
a potential area of future work: to build compact or light-
weight models such as MobileNets [8] and TinyML [25]
in a fully private mode and also make sure that the impact
on accuracy due to these lightweight models is negligible.
There can also be more exploration in using any better op-
timization techniques other than TVM, with ideas taken
from algorithms or other numerical optimizations.

In light of the challenges faced with the implementa-
tion, it becomes apparent that future work into privacy
preserving machine learning can focus on improving the
approachability of tasks including porting machine learn-
ing architectures into trusted execution environments and
incorporating the option for adding Differential Privacy
into architectures within programming suites like Pytorch
[20] and TensorFlow [1]. The first of these tasks could be
approached via either improving the support for multiple
operating systems in TVM or through developing a more
ad-hoc software package specifically designed to port ma-
chine learning architectures to platforms like Intel SGX
[22], Arm TrustZone [14], or other similar TEEs.

6 Related Work

Several cryptographic methods are leveraged to tackle
this issue, such as Multiparty Computation [5], Homo-
morphic Encryption [21] and Zero Knowledge Proofs,
however these methods suffer from slow execution and
delayed processing times, and adversely affect the per-
formance. Although these cryptographic methods pro-
vide strong theoretical guarantees, this disadvantage of
speed, especially in computationally intensive deep learn-
ing models, will not make it scalable thereby hampering
its adoption. Hence, the non-cryptographic methods like
Trsuted Execution Environments and Differential Privacy
are more realistic in the context of end-to-end privacy
preserving machine learning that requires heavy compu-
tations.

There are other works in this area on trusted hardware
but without Differential Privacy, like Gazelle [11], Chiron
[9] and Slalom [24]. In the other related works, Differen-
tial Privacy is proposed as a low cost method for training a
model without leaking sensitive information about inputs
[2]. Differential Privacy is further explored and quantified
in this work [3]. TensorSCONE [12] looks into the inte-
gration of TEEs with TensorFlow to enable and allow for



privacy preserving training of Machine Learning models
on untrusted hardware [13].

The work of Nicolas .et.al. [19] articulates a compre-
hensive threat model for ML, and categorizes attacks and
defenses within an adversarial framework. Their work
however does not highlight key takeaways of Privacy-
Speed-Accuracy tradeoff for machine learning models un-
der different settings especially under TEEs. Moreover,
another work [18] comprised research in exploration of
machine learning models under different environments
while taking into consideration tensions between model
complexity, accuracy, and resilience. This work, however,
unlike ours, did not consider performance as a factor.

7 Conclusion

In this work we attempted to study and analyse privacy-
preserving machine learning with trust computing plat-
forms through the lens of trade-offs between Accuracy,
Speed and Privacy. We explained the need for such a study
to equip users with detailed insights that can help them
make decisions on the choice of environments based on
their own needs, in contrast to a one-size-fits-all approach.
We also recommend that developers of these frameworks
allow fine grained choice of features for implementation,
rather than giving out only the fully private stack. Our
work also highlights the fact that this space of privacy in
ML is very nascent and there needs to be a lot of soft-
ware engineering effort to allow users to adopt them eas-
ily without additional implementation overhead. While
the results and insights are limited due to multiple chal-
lenges faced, we hope this will act as a first step towards a
robust and reliable ASP study in privacy-preserving ML.
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